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ON THE PERTURBATION FRONT STRUCTURE FOR TRANSPORT PROCESSES

WITH SPATIAL–TEMPORAL NONLOCALITY

UDC 536.201O. Yu. Dinariev

The one-dimensional problem of the propagation of a perturbation front from a point instantaneous
source for transport processes with spatial–temporal nonlocality is considered. A class of nonlocality
kernels with a singularity of the form t−1 for small times is used. The front propagation speed v is
calculated and an expression for perturbations in the vicinity of the front is derived in the form of
an asymptotic series in powers of the parameter τ = t− xv−1.

Transport processes (heat conduction, diffusion, propagation of transverse modes in a viscous fluid, filtration,
etc.) are usually described by parabolic equations of the heat equation type. A property of these equations is the
infinite signal propagation speed. But this contradicts physical laws since the propagation speed of every signal
should not at least exceed the speed of light in vacuum. Therefore, a physically justified description of transport
processes requires modification of the basic dynamic equations.

The above circumstance has been discussed in the literature for a long time. Cattaneo [1] proposed to replace
the parabolic equation by a hyperbolic equation with a small parameter at the higher derivative with respect to
time. Later it was established that the method of [1] is a special case of the more general approach that takes into
account the relaxational relationship between the flux of the quantity being transported and its gradient [2]. The
question of the limiting speed of a signal was studied for a relaxation kernel of general form [3]. It was shown that
in propagation of a signal from a point source, the perturbation front structure is determined by the behavior of
the relaxation kernel at small times [4].

However, it is known that models with relaxation (i.e., models with temporal nonlocality) are approximations
of more general models that take into account not only temporal but also spatial dispersion. Constitutive relations
with spatial–temporal nonlocality arise in hydrodynamic description in kinetic theory and in classical and quantum
statistical mechanics (see [5]). At the same time, the problem of the relationship between the condition of finiteness
of the signal propagation speed and the properties of a kernel is more complicated in the case of models with
spatial–temporal nonlocality. This problem is solved in the present paper for a class of kernels with a singularity of
the form t−1 for small times. For simplicity, we consider the one-dimensional case.

Let the dynamics of the quantity u = u(t, x) be described by the local conservation equation with sources

∂tu+ ∂xJ = q(t, x), (1)

where J is the flux of the quantity u and q = q(t, x) is the source field. In various problems, the quantity u can
describe temperature, concentration, the transverse velocity component in a viscous fluid, fluid pressure during
filtration in a porous medium, etc. When the spatial–temporal nonlocality is taken into account, the dynamic
equation (1) is closed by the constitutive relation

J = −
∫
K(t− t1, x− x1)∂xu(t1, x1) dt1 dx1. (2)

Substitution of (2) into (1) yields the integrodifferential equation for u = u(t, x):

∂tu(t, x)−
∫
K(t− t1, x− x1)∂2

xu(t1, x1) dt1 dx1 = q(t, x). (3)
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In the case of slow processes with a small spatial gradient, i.e., at the limit of low frequencies and long waves,
relation (2) becomes

J = −æ∂xu, æ =
∫
K(t, x) dt dx,

and the dynamic equation (3) reduces to the ordinary heat equation

∂tu− æ∂2
xu = q(t, x).

The kernel K(t, x) characterizes the relaxation properties and spatial dispersion of the medium.
The function K(t, x) should satisfy the following conditions that ensue from physical and thermodynamical

considerations.
1. Since the properties of the medium are assumed to be invariant under the spatial inversion x→ −x, the

following relation holds:

K(t, x) = K(t,−x). (4)

2. For the Fourier image of the kernel

KF (ω, k) =
∫

exp(−i(ωt+ kx))K(t, x) dt dx,

the dissipativity condition should hold or, in other formulation, the condition of consistency of the model with the
second law of thermodynamics [5]

ReKF (ω, k) > 0. (5)

3. Since a class of models with finite speed of signal propagation is considered, the function K(t, x) should
vanish outside the cone

CV = {(t, x) | V 2t2 − x2 > 0, t > 0}, (6)

where V is a positive constant with the dimension of speed. It is known [6] that the condition that the support of
the function K(t, x) belongs to the cone (6) is equivalent to the holomorphy of the Fourier image KF (ω, k) in the
complex tube

TV = {(ω, k) | V −2(Imω)2 − (Im k)2 > 0, Imω < 0}. (7)

4. Let us assume that inequality (5) holds not only for real values of the frequency ω and wave number k
but also in the case where the frequency ω takes values in the lower complex half-plane Imω < 0.

For simplicity, we shall use the system of units such that V = 1.
We consider the class of kernels of the form

K(t, x) = θ(t− |x|) exp(−αt)[At−1 + ϕ(t, x)]. (8)

Here θ is the Heaviside function, A > 0 and α > 0 are constants, and ϕ(t, x) is a function that is smooth and
bounded in the cone C1 and even in the spatial coordinate. Thus, the class of kernels considered is distinguished
by a singularity of the form t−1 for small times.

The Fourier image of the kernel (8) can be represented as the sum

KF (ω, k) = Φ1(ω, k) + Φ2(ω, k),

where

Φ1(ω, k) = A

∫
t>|x|

exp(−i((ω − iα)t+ kx))t−1 dt dx = 2Ak−1

∫
t>0

exp(−i(ω − iα)t)t−1 sin(kt) dt, (9)

Φ2(ω, k) =
∫

t>|x|

exp(−i((ω − iα)t+ kx))ϕ(t, x) dt dx. (10)

Integral (9) can be calculated in explicit form using formula 3.381.4 from [7]∫
t>0

tν−1 exp(−µt) dt = µ−νΓ(ν), Reµ > 0, Re ν > 0.
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For this, we need to replace the power-type singularity t−1 in expression (9) by the singularity tν−1 and then pass
to the limit as ν → 0. As a result, we obtain

Φ1(ω, k) = A(ik)−1 ln ((ω + k − iα)/(ω − k − iα)). (11)

It is easy to check that for Im k = 0 and Imω 6 0, we have

Re Φ1(ω, k) > 0. (12)

Let us find the asymptotic behavior of the functions Φ1(ω, k) and Φ2(ω, k) as Imω → −∞ in the complex
tube T1. From (11) we have

Φ1(ω, k) = −2A(Imω)−1 +O((Imω)−2). (13)

Integrating by parts, for the function Φ2F (ω, k) we obtain

Φ2(ω, k) = ζ1(ω, k) + ζ2(ω, k) + ζ3(ω, k), (14)

where

ζ1(ω, k) = 2((iω + α)2 + k2)−1ϕ(0, 0),

ζ2(ω, k) = (iω + α)−1

+∞∫
0

((iω + α+ ik)−1 exp(−i(ω − iα+ k)x)

+ (iω + α− ik)−1 exp(−i(ω − iα− k)x))
d

dx
ϕ(x, x) dx,

ζ3(ω, k) = (iω + α)−1

∫
t>|x|

exp(−i((ω − iα)t+ kx))∂tϕ(t, x) dt dx.

The term ζ3(ω, k) in (14) has the functional form of the initial function (10) and can be represented in a
form similar to (14). The term ζ2(ω, k) also admits integration by parts. Thus, the major contribution to (14) is
from the term ζ1(ω, k) and the following estimate is valid:

Φ2(ω, k) = O((Imω)−2). (15)

Relations (12), (13), and (15) imply that condition 4 can be satisfied for a rather wide class of functions ϕ(t, x)
since the contribution of this function to the Fourier image of the kernel for Imω → −∞ is an infinitesimal of higher
order.

For Eq. (3), we consider the problem of the propagation of perturbations from a point instantaneous source
q(t, x) = aδ(t)δ(x) (a is an arbitrary number). Converting to the Fourier images in Eq. (3), we obtain

Ψ(ω, k)uF (ω, k) = a, Ψ(ω, k) = iω + k2KF (ω, k). (16)

Equation (16) enables us to find a solution for the quantity u in quadratures:

u(t, x) = a(2π)−2

∫
exp(iωt) dω

∫
exp(ikx)
Ψ(ω, k)

dk.

Here the integral with respect to k is taken along the real axis, and the integral with respect to ω is taken along
the straight line Imω = −ε (ε is a small positive number). By condition 4, the integrand is regular everywhere,
and for large absolute values of k and ω, the integral is calculated in the sense of the principal value.

According to condition 3, the function Ψ(ω, k) is holomorphic in the tube T1 [see (7)]. Formula (16) makes
it possible to calculate the function uF (ω, k) for complex values of k and ω. The perturbation propagation speed
is defined as a maximum value v > 1 such that the function uF (ω, k) is holomorphic in the tube TV . Under this
condition, the function u(t, x) necessarily vanishes outside the cone CV [6].

Equality (4) implies the relation Ψ(ω, k) = Ψ(ω,−k). To solve the problem posed, it suffices to study the
roots k = k(ω) of the equation

Ψ(ω, k) = 0 (17)
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for the wave number with the additional condition Im k > 0. We note that by condition 4, there are no solutions
with Im k = 0.

Let us give a numerical algorithm for finding the roots of Eq. (17) for fixed ω (Imω < 0). The function Ψ(ω, k)
is holomorphic with respect to the parameter k in the strip |Im k| < |Imω|. Therefore, generally speaking, Eq. (17)
can have a discrete set of solutions kn = kn(ω) (n = 1, 2, . . . ).

We note that integration of the function (10) by parts yields

Φ2(ω, k) = 2
∫

06x6t

exp(−i(ω − iα)t)ϕ(t, x) cos(kx) dt dx

=
2
k2
ϕ(0, 0) +

2
k2

∫
06t

exp(−i(ω − iα)t)
d

dt
ϕ(t, t) cos(kt) dt

− 2
k

∫
06x6t

exp(−i(ω − iα)t)∂xϕ(t, x) sin(kx) dt dx.

The last term has the same functional structure as the function Φ2(ω, k) has and, consequently, it can also
be transformed by integration by parts. As a result, for |k| → +∞, we have the asymptotic relation |Φ2(ω, k)| =
O(|k|−2). Hence, with account of formula (11), we conclude that for |k| → +∞ the following asymptotic relation
holds:

|Ψ(ω, k)| = πA|k|+O(1).

Therefore, Eq. (17) can have solutions kn = kn(ω) only in a bounded domain of the complex plane.
Next, we find more precise positions of the roots of Eq. (17) on the complex plane. For this, we find the

contour integrals

KC =
1

2πi

∮
C

∂kΨ(ω, k)
Ψ(ω, k)

dk,

where KC is the number of roots of Eq. (17), with their multiplicities taken into account, in the domain enclosed
by the contour C.

The algorithm for calculating the values of kn = kn(ω) with preassigned accuracy can be completed by
Newton’s iteration procedure.

The required value of the speed v is defined by the functions kn = kn(ω) through the relations

v−1 = inf
ω,n

(Hn(ω)), Hn(ω) = Im kn(ω)/(− Imω). (18)

We note that by definition, the infimum in (18) cannot be reached on the boundary of the domain of holomorphy.
Neither can it be reached at an internal point in this domain. Indeed, if the infimum v−1 = Hn(ω0) is reached at
some point ω0, then the harmonic function of two real variables (ω1 = Reω and ω2 = Imω)

h(ω1, ω2) = Im kn(ω1 + iω2) + v−1ω2 (19)

reaches the minimum equal to zero at the point ω1 = Reω0, ω2 = Imω0. By the properties of harmonic functions,
the last is possible only if the function (19) is identical zero. Therefore, the solution depends linearly on the
frequency, kn(ω) = −v−1ω + β, which contradicts Eq. (17) for ω → 0.

Thus, the infimum (18) can be reached only for |ω| → +∞. Setting z = −k/ω and passing to the limit as
|ω| → +∞ in Eq. (17) with account of (11) and (14), in the main approximation we obtain the equation

1 +Az ln ((1− z)/(1 + z)) = 0. (20)

Equation (20) has a unique positive solution z0 = z0(A) < 1, which defines the required value of the perturbation
propagation speed v = z−1

0 . The dependence of the speed v on the parameter A for small values of A is presented
in Fig. 1. For large A, the approximate dependence v ≈ (2A)1/2 holds.
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Fig. 1

Thus, the unique solution k1 = k1(ω) of Eq. (19) satisfies the condition Im k1 > 0. Here the function
k1 = k1(ω) admits the asymptotic expansion into the series:

k1(ω) = −ω
+∞∑
n=0

zn(iω)−n. (21)

The terms of series (21) are calculated recurrently by substitution of (21) into Eq. (17) with the use of expres-
sions (11) and (14):

z0 = v−1, z1 = 2z3
0(αA− ϕ(0, 0))(1− z2

0 + 2Az2
0)−1, . . . .

Expressions (11) and (14) for ω → +∞ (Imω = 0) imply the asymptotic relation

ReKF (ω, k) = 2ω−2(Aα− ϕ(0, 0)) +O(ω−3).

Therefore, according to relation (5), the inequality Aα − ϕ(0, 0) > 0 should hold. Hence the inequality z1 > 0
follows.

We represent the solution of Eq. (16) in the form

uF (ω, k) = a(J1(ω, k) + J2(ω, k)),

J1(ω, k) = ∆(ω)2k1(ω)(k2 − k1(ω)2)−1, J2(ω, k) = 1/Ψ(ω, k)− J1(ω, k),

where ∆(ω)−1 = (∂Ψ/∂k)
∣∣∣
k=k1(ω)

.

Let us study the perturbation front structure at a fixed point x > 0, i. e., the dependence of the solution on
the parameter τ = t−xv−1 for small values of this parameter. The function J2(ω, k) is holomorphic in the complex
tube T1, and therefore, its Fourier preimage vanishes outside the cone C1. This means that for sufficiently small τ ,
we have

u(t, x) =
a

(2π)2

∫
exp(i(ωt+ kx))J1(ω, k) dω dk,

where the integral with respect to k is calculated by the residue theorem. As a result, we have

u(t, x) =
ai

2π

∫
exp(i(ωt+ k1(ω)x))∆(ω) dω. (22)

Using Eq. (21), for the integrand in (22), we obtain the asymptotic series

exp(i(ωt+ k1(ω)x))∆(ω) = −i exp(iωτ)
+∞∑
n=0

Xn(x)(iω)−n,
(23)

X0(x) = Az0(1− z2
0) exp(−z1x)(1− z2

0 + 2Az2
0)−1, . . . .

To calculate the asymptotics of function (22) for small τ on the basis of the asymptotic series (23) we use the
method proposed in [4]. We specify a positive integer N and an arbitrary sequence of mutually different positive
numbers yj , j = 0, . . . , N + 1. We introduce an auxiliary function
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F1(ω, x) = b−1 +
N+1∑
j=0

bj(iω + yj)−1,

where the coefficients bj are found from the system of linear equations

b−1 = X0(x),
N+1∑
j=0

bjy
k
j = (−1)kXk+1, k = 0, . . . , N. (24)

System (24) always has a unique solution. Next, we introduce the functions

F2(ω, x) = exp(ik1(ω)x)∆(ω) + i exp(−iωxv−1)F1(ω, x),

u1(t, x) =
a

2π

∫
exp(iωτ)F1(ω, x) dω, (25)

u2(t, x) = u(t, x)− u1(t, x) =
ai

2π

∫
exp(iωt)F2(ω, x) dω.

Since F2(ω) = O(ω−(N+2)), which follows from the definitions, therefore, the function u2(t, x) is at least N times
differentiable with respect to time and vanishes for τ < 0. Thus, u2(t, x) = o(τN ). By the residue theorem,
integral (25) is calculated explicitly:

u1(t, x) = a
(
b−1δ(τ) + θ(τ)

N∑
j=0

bj exp(−yjτ)
)
.

Taking into account the above results, we conclude that the resultant formula describing the behavior of the
function u(t, x) in the vicinity of the front has the form

u(t, x) = a
(
X0δ(τ) + θ(τ)

N∑
j=0

Xj+1
τ j

j!
+ o(τN )

)
. (26)

Formula (26) together with the calculation of the front propagation speed v is the main result of the present
paper. It allows one to relate the perturbation front structure in transport processes to spatial–temporal nonlocality
and determine the characteristics of the kernel K(t, x) whose observation in other processes is difficult. Thus,
experimental determination of v and the front structure can be used to refine the analytical structure of the kernel
on the whole.

Formula (26) was derived for a point instantaneous source. In the case of a point source with intensity
depending on time, an expression for perturbations in the vicinity of the front can be derived by convolving
expression (26) with the source function.
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Comp. Rend. Acad. Sci. Paris, 247, No. 4, 431–433 (1958).

2. M. E. Gurtin and A. C. Pipkin, “A general theory of heat conduction with finite wave speeds,” Arch. Rat.
Mech. Anal., 31, No. 2, 113–126 (1968).

3. O. Yu. Dinariev, “On wave propagation velocity for transport processes with relaxation,” Soviet Phys. Dokl.,
33, No. 8, 579–580 (1988).

4. O. Yu. Dinariev, “Perturbation front structure for transport processes with relaxation,” J. Appl. Math. Mech.,
55, No. 6, 828–835 (1991).

5. O. Yu. Dinariev, “Fundamental assumptions of the phenomenological approach in nonlocal fluid dynamics,”
J. Appl. Math. Mech., 63, No. 4, 569–578 (1999).

6. V. S. Vladimirov and A. G. Sergeev, “Complex analysis in the tube of future,” in: Reviews of Science and
Engineering, Ser. Modern Problems of Mathematics. Fundamental Fields [in Russian], Vol. 8, VINITI, Moscow
(1985), pp. 196–266.

7. I. I. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York (1980).

971


